		(2½ Hours) (Te	otal Marks : 75
N.B.	2. 3.	All questions are compulsory. Choice is internal. Figures to the right indicate full marks. Draw figures and flowcharts wherever possible. Use of non-programmable calculators permitted.	
1.	(A)	Select the most appropriate answer from the given options. An	swer any 03
		three.	
	i)	A saturated C16 fatty acid will undergo maximum turns of β -	-oxidation
		and yield acetyl-CoA units.	
	•••	(a) 8,8 (b) 7,8 (c) 8,9	30, 9, 4, 12, 10,
	11)	Lipogenesis from acetyl-CoA occurs in the of liver.	
		(a) mitochondria	
		(b) endoplasmic reticulum	(5)
		(c) cytosol	100 St
	iii)	Thiokinase is an alternative name for	98
		(a) acyl-CoA synthetase	7
		(b) carnitine palmitoyl transferase	
	:\	(c) acyl-CoA dehydrogenase	
	1V)	The two sulphydryl groups of fatty acid synthase complex are contrib	uted each
		by cysteine of ketoacyl synthase and	
		(a) cysteine of acyl carrier protein	
		(b) cysteine of hydratase (a) phosphoportotheine of oxyl carrier protein	
	**/	(c) phosphopantetheine of acyl carrier protein is not an intermediate during ketone body synthesis.	
	v)	(a) acetoacetyl CoA	
	2000	(a) acetoacetyl CoA (b) β-hydroxy-β-methyl glutaryl-CoA	
		(c) β-hydroxy butyrate	
		During β oxidation, is not produced.	
	X1)	(a) Acetate (b) NADH/H ⁺ (c) FADH ₂	
	2000	(a) Rectale (b) 17(D11/11 (c) 17(D11 ₂	
366	(B)	Answer any one of the following	02
0.00	D V V V	What is ketosis?	02
	ii)	+ (∆', ½', ½', 6', C'', ½', 2'', 0'', 6'', ½'', 2'', 2'', 2'', 2''', 2''', 2''', 2''', 2''', 2''', 2''', 2''',	
() () () () () () () () () ()	(C)	Answer any one of the following	04
533	(i)		Ų -
366	ii)	With detailed reactions, explain the conversion of acetoacetate to	other two
2000	200 ST	ketone bodies.	

	(D)	Answer any one of the following	06
	i)	Write the reactions for conversion of 3-ketoacyl-CoA to acyl-CoA.	3,45
	ii)	Explain mitochondrial β oxidation of palmitoyl CoA with detailed reactions.	96
2.	(A)	Select the most appropriate answer from the given options. Answer any	03
		three.	5
	i)	links the flavoproteins to cytochrome b.	
		(a) Ubiquinone (b) Cytochrome c (c) Dehydrogenase	
	ii)	If the free energy change, delta G is negative with a high magnitude, the	
		reaction is	
		(a) exergonic and irreversible	0
		(b) endergonic and reversible	
		(c) endergonic and irreversible	
	iii)	is a copper containing protein.	
		(a) Cytochrome b	
		(b) Flavoprotein	
		(c) Cytochrome oxidase	
	iv)	Complex I of ETC is also called as	
		(a) Succinate dehydrogenase	
		(b) NADH: ubiquinone oxidoreductase	
		(c) cytochrome oxidase	
	v)	In plants, the photosystems are organized in membrane.	
		(a) thylakoid (b) mitochondrial (c) nuclear	
	vi)	Photosystem II contains	
	93.35 S	(a) P_{680} (b) P_{700} (c) P_{540}	
	(B)	Answer any one of the following	02
	(i)	Name the constituents of complex III of mitochondrial electron transport chain.	
		Define photophosphorylation.	
9	(C)	Answer any one of the following	04
	i)	Explain the chemiosmotic theory for oxidative phosphorylation.	
	ii)	Explain noncyclic photophosphorylation.	
	(D)	Answer any one of the following	06
3	i)	Schematically depict Calvin cycle and add a note on its significance.	
800	ii)	The mitochondrial electron transport chain consists of electron carriers in the	
900	80 C	form of complexes. Depict the sequence of these electron carriers and show the	
3	3000	site of ATP synthesis and sites of inhibition by antimycin and CN	

3.	(A)	Select the most appropriate answer from the given options. Answer any three.	03
	i.	is a peptide hormone.	
		(a) Glucocorticoid (b) Oxytocin (c) Insulin	600
	ii.	is not secreted by pituitary.	300
		(a) TSH (b) Vasopressin (c) Epinephrine	200
	iii.	Iodination of tyrosine residues of forms triiodothyronine.	3
		(a) TSH (b) Thyroxine (c) thyroglobulin	
	iv.	Insulin has intrachain and interchain disulphide bridges.	NO.
		(a) 1, 2 (b) 3, 1 (c) 2, 3	KS.
	v.	is characterized by hyperthyroidism.	
		(a) Myxedema (b) Cretinism (c) Toxic goitre	
	vi.	increases blood glucose levels.	
		(a) Insulin (b) Glucocorticoid (c) Vasopressin	
	(B)	Answer any one of the following	02
	i)	Explain hormone receptor.	
	ii)	Write in brief on antidiuretic hormone.	
	(C)	Answer any one of the following	04
	i)	Justify: Glucocorticoids play an important role in human body.	
	ii)	Schematically only explain the action of epinephrine on glycogenolysis.	
	(D)	Answer any one of the following	06
	(i)	Explain the synthesis and secretion of insulin. Add a note on the physiological	
435		effects of insulin deficiency.	
	ii)	Classify hormones on the basis of chemistry. Give examples.	
4.	(A)	Select the most appropriate answer from the given options. Answer any three .	03
	<u>i)</u>	Restriction endonucleases cut DNA (a) and RNA at specific sites (b) at random sites (c) at specific sites	
	ii)	\$1.50 P P P P P P P P P P P P P P P P P P P	

iii)	The technique used during isolation of a gene from an organism is) 00 (2)
	(a) Southern blotting	3,45
	(b) SDS –PAGE	3000
	(c) Western blotting	3000
iv.	is a structural database.	300
	(a) BLAST (b) PDB (c) Swiss Prot	500
V.	The organism whose natural plasmid is engineered for transferring foreign	3
	DNA into plants is	
	(a) Bacillus thuringiensis	70.
	(b) Agrobacterium tumefaciens	T. S.
	(c) Lepidoptera larva	
vi.	DNA chip is used for studying	
	(a) gene expression (b) DNA mutation (c) gene cloning	
(B)	Answer any one	02
i)	What is BLAST?	
ii)	Define genomics and proteomics	
(C)	Answer any one	04
i)	Explain the process of <i>in vitro</i> amplification of DNA.	
ii)	Write a note on sequence databases.	
1	Answer any one	06
i)	State the characteristic features of plasmid pBR322. With the help of a	
200	flowchart (only), depict the steps involved in cloning a mammalian gene with	
505	the help of plasmid pBR322.	
ii)	Justify: rDNA technology finds applications in producing therapeutic	
	substances and in agriculture.	
1000	\$\chi_{\hat{\hat{\hat{\hat{\hat{\hat{\hat	
	Answer any one	03
	Justify: Ketone bodies are overproduced in Diabetes and during starvation.	
ii)	Give an account of the number of ATPs formed when a C18 fatty acid	
	undergoes β–oxidation.	
Y' 45 1 c	Answer any one	03
$Y \wedge Y'$	What is F ₀ F ₁ ATPase?	
ii)	Schematically depict cyclic photophosphorylation and add a note on its significance.	

(C)	Answer any one
i)	Explain the effect of thyroxine on metabolism.
ii)	Write in brief on the physiological role of oxytocin.
(D)	Answer any one 0
i)	State any three applications of Bioinformatics.
ii)	Write in brief on DNA library.
(E)	State true or false. Answer any three
i)	Steroid hormones act by binding to an intracellular receptor.
ii)	CoQ serves as a mobile carrier of electrons and protons.
iii)	CLUSTAL W is a sequence database.
iv)	In Non-cyclic photophosphorylation, there is no formation of NADPH.
v)	Fatty acid biosynthesis uses NADPH as reducing equivalent.
vi)	Cos site in a cloning vector is obtained from a bacteriophage.